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1 INTRODUCTION

The Khinchin constant arises in the measure theory of continued fractious. Ev-

ery positive irrational number can be written uniquely as a simple continued

fraction [a0, al, a2,..., a,_,. • .]; i.e., with a0 a non-negative, and all other ai pos-

itive integers. The Gauss-Kuz'min distribution ([11]) predicts that the density

of occurrence of some chosen positive integer k in a random such fraction is

given by

Prob(a,_=k)=-log 2 1 (k+1) 2 "

In his celebrated text, Khinchin ([11]) uses the Gauss-Kuz'min distribution to

show that for almost all positive irrationals the limiting geometric mean of the

positive elements ai of the relevant continued fraction exists and equals

I '0 := II 1+ k(k+ 2) =
k=l k=l

The fundamental constant I{0 is the Khinchin constant. It is known that this

constant can be cast in terms of various converging series, the following exam-

ple of which having been used decades ago to provide the first high-precision
numerical values for K0 [16, 21, 22]

log(Ko)log(2)=E_(2s)-I 1_ 1 1 1T g-+ (1)
$=1

This series can be rendered even more computationally efficient via the introduc-
tion of a free integer parameter. We used a carefully optimized free-parameter

series to resolve K0 to over 7000 decimal places ([{0 = 2.68545200106--. see

Section 5).

The Khinchin constant can be thought of as a special case of a more general

statistical mean. For any real number p < 1, the Hdlder mean of order p of the

continued fraction elements, namely lime[(al v + a_ +... + a_)/k] _Iv, also exists
with probability one and equals

kk=l

(See the final section of Khinchin's book ([11]) for a proof for p < ½, or more

modern references on ergodic theory for a proof for p < 1 [15].) We may interpret

Ko as the limiting instance of the K v definition as p --* 0. We shall show that

for any negative integer p the Khinchin mean of order p satisfies an identity

(Kv)V log(2) = E(((s - p) - 1)O, v (2)
s=2
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where each coefficient Q_p is rational. Again there is a free-parameter general-
ization, which we employed to resolve the harmonic mean K-1 also to over 7000

decimal places (K1 := 1.74540566240... see Section 5). It is of interest that,

evidently, only K0 can be written as a series involving exclusively even zeta

arguments. The computational implications of this unique property of K0 are
discussed in Section 5. We should mention that aside from the Shanks-Wrench

series for K0 there are other previously known formulae for Khinchin means,

some of which formulae involving derivatives of the zeta 51nction [19].

2 FUNDAMENTAL IDENTITIES

This section is devot_d to presenting the basic identities. We begin with a list
of preliminary, largely elementary, results needed il_ the paper. All of these

rearrangements may be ea.sily justified.

Lemma 1. (a)
A

- log(l - x) log(1 + x) --E -_:x
2}

k=l

V',2s-I{_-where As :--/_.,}=,_ [)}-i/k.

(b)

/v N
i

E log(1 - _1 log(1 -+- k) .....E log(k 1) log(1 ) log(N) log(1 + _).
k=2 k=2

Thus, (c)

0o -1 _)1 - log(K0)log(2).log(1- z)log(1 + =
k----2

Proof. Part (a) is most easily seen by differentiating both sides. The Left-hand

side becomes f(x)- f(-x) where f(x) := log(1 + x)/(1- x). Using the standard

relationship

c_ c_ k

1-x
k=l k=l j=l

produces (a).
Part(b) is easily established inductively after expanding the left-hand side.

Part (c) follows on taking limits and noting that

N

1 log(K0) log(2),--_ log(k - 1)]og(l - _-_) ----
k----:!
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as follows from the definition of K0. (_

We will find it convenient to use the Hurwitz zeta function written

oo 1

((s,N) := E (n + N) s

so that ((s) = ((s, 0) and so that for N a non-negative integer

N
1

¢(s,N) : C(s)- _ -;.
n:l

With this notation we have:

Lemma 2. (a) For N a positive integer

oo

(b) For N a positive integer

_(2n, N_.....___)_ log(N + 1).
n

r_ml

(c)

1 log(1 - t 2)_-+-6 at = -l&(2).

Proof. The proofs of the first two identities are similar and rely on expanding
the zeta terms, rearranging the order of summation and re-evaluating. In both
cases, the result telescopes to the desired conclusion.

Part (c) is less immediate. Actually, the indefinite integral is evaluable with the

aid of the dilogarithm ([12]). Alternatively, Maple yields the result that

equals the log terms

' log(1: _) d.
f x(1+ x)

log2,1( + t) log2(2) + log(2) log(1 - t) - log(l + t) log(1 - t) + log(t) log(1 - t)
2

plus the dilog terms

dilog(t) - dilog(1 + t) - dilog(2-_-:),

and Maple also happily performs the final evaluation (the limit at 1). ©
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We are now in a position to establish the general Shanks-Wrench identity [16]
for K0.

Theorem 3. For ally positive integer N,

A Iv 1,
log(K0) log(2) = _-_ ((2s, N) 2_ - :)-_ log(l- l)l°g(lk + -)k' (3)

s=l k=2

V-2_-l._l)k-_/k.where As := z__k=l {

Remark. N is a free parameter that can be optimized in actual computations
to significantly reduce the number of zeta evaluations required. Variation of

this parameter also provides a kind of error check, for whatever the choice of

positive integer N, one expects an invariant result for the left-hand side. Note

that in the case N = 1 the second summation is empty, and we recover precisely

the K0 identity (1) c,f Section 1.

Proof. Let f(N) de_ote the right-hand side of (1). then

/(N 1) I(N) E As N-2* 1 1.... s + log(1 - ) log(1 + _)

which equals zero by Lemma l(a). Thus, since _(2s, N) _ 0, sufficiently rapidly

f(1) = f(N) = lim f(N)
N_oO

(x}

k---2

By Lemma l(c), this sum agrees with log(K0) log(2). (_)

As a companion relation to the identity of Theorem 3, we can establish an

elegant integral repr('sentation for the left-hand side. There is a powerful gen-

eralization of Lemma 2(b) in the form of a generating function based on Euler's

product for sin(_rt)/(%/) (see [18], page 249). For real t in [0,1) define g(t) by

= [sin(rt)'_
g(t):= _; ;(2s)- lt_'_=-l°g _) + l°g(1-t2)'s (4)

$----]

and define also the limiting case g(1) := log2. We only need observe now that,
on the basis of Theorem 3, with parameter N = 1,

1 log(2) + g(t)/tdt,l,,g(I(o) log(2) = 1 + t

and with the help of t he previous dilogarithm integral evaluation we thus arrive

at an integral representation. ([16] contains an equivalent, though less stream-
lined, integral identity,.)
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Corollary 4. Thefollowingintegralrepresentationholdsfor I(0:

fo log[sin(Trt)/(Trt)]t(1 + t) dt = - log(K0)log(2).

The integral is sufficiently easy to handle that Greg Fee has computed 500 digits

of K0 in Maple this way in about 10 minutes. It is amusing to observe that

Lemma l(c) may also be turned into an an analogous integral form:

log(Ko)log(2)= fCO log([tj) _1t(1 + t) dt= l°g([1/tJ) dt'l+ t

This was observed from a very different starting point by l_obert Corless [9] but

follows immediately on breaking the first integral up at integer points.

We now derive new, corresponding identities for the higher-order Khinchin

means. They are in some sense simpler, since one logarithmic term is replaced
by a negative integral power. There is an observation that leads directly to a

zeta function expansion for these general Khinchin means. Note that a sum of

terms k p log(1 - (k + t) -2) can be expressed, via expansion of the logarithm, in

terms of sums of the form (note p is assumed to be a negative integer):

_o 1
- .

,_=2 n2'-v(1 1/n)-P

Upon expansion of the term

1/(1 - 1In)-;

in powers of l/n, we obtain an identity for the p-th power of K v as a series

of zeta functions. The result, after the same free parameter manipulations we
used for h'0, reads:

Theorem 6. For negative integer p and positive integer N we have

n - Elog(1 - )(k - 1) p.
n=l k=2

Remark. Note that for N = 1 the final sum is empty, the coefficient of any

given ((s) is an easily computed rational, and we immediately establish a general

series with rational coefficients, (2) of Section 1.

Corollary 7. The harmonic Khinchin constant satisfies for integer N > 0 :

fi V_u'_ t'tk N) fi log(1 k -u)
log(2) _ _- - z..,_-=u _, ,

K-1 n k t
n=l k=2
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Proof. It suffices to show that

o 2n 1

?2¢(2n+j+l,N)+E((k,N)= g.
j=0 k=2

This follows from Lcmma 2(@ (_

3 POLYLOGARITHMS AND RELATED ZETA FUNCTION

IDENTITIES

There exist some interesting identities for the Khinchin constant in terms of

polylogarithm evaluations. One particularly interesting polylogarithm identity
is obtained by resolving the integral representation of Corollary 4 in polyloga-

rithm terms [23]. One may employ the Euler product for sin z/z to write the

integral as a sum of logarithmic integrals, each in turn expressible in terms of

polylogarithms. This; procedure leads to the series:

(XI

1E(- 1)'_Li2(_ff)log(I/0) log(2) = 1og2(2) + Li2(-1) +
n=2

where, the polylogar, thm Lain(z):= 27=1 Zk_-m"

A more direct applice lion of polylogarithms is to invoke the cl_sic Abel identity:

X

log(l-x) log(l-y) = Li2(1_--_)+Li,. ( y xy- 1---_)-Li2(x)--Li2(y)-Li2((1 - x)(1 - y))

to Lemma l(c), with x := 1/n, y := -l/n to obtain, from a telescoping sum:

log(n0)log(2)- llog2(2)+  Lie( _ 11)6 2
n----e

An interesting line of analysis starting from this last polylogarithm series is to
"peel off" parts of th,' Lie function, casting the correcrAons in closed form. Such

a procedure gives polylogarithm-based analogues of "rheorem 3. For example,

one can replace the last Li2 summand above with a more rapidly decaying term:

Lie(n2-__l 1)

and add back a corre,'.tion:

-1 1 1

n_ - 1 4 (n 2 - 1) _

7r2 59-f_(1) + a(2) - 48 64

where ft is the zeta-like function
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oo 1

,___ ( n2 1) m"

A careful Eulerian partial fraction decomposition (as detailed in [5]) produces

a closed form for all integral m > 0

Lm/2J

1 2_.'+_ ,.}
k----'l

Moreover,

Z {((2n) - I} = f_(1) + _(2),
n,_=i

and for m = 2, 3,..., one may show inductively using another partial fraction

argument

{_(2,_)- _}= a(m) + a(m + 1) - (C(2_) - _},
n=l

from which we may easily obtain a closed form for

_ p(kll¢(2k) - _}= _ P(k)¢(2k, 21
k=l k=l

for any polynomial P. Thus,

and

k
I¢=1

k=l

k----1

k---1

k----1

(_)¢(2k, t) = _+_¢(2),

31

32 <(4)+ e(2),\zl

(:)((2k, l) - 505512

((2k, 1) - 2069
2048

k----t

C(10)+_(6) q-i<(4) - 2T6 ((2)
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with direct analogu,s for ((2k, m) for m > 1.

To complete this section we observe that for m = 1, 2,...

CO CO

Z - 1 --  Li Ct/ 2) '
n=l n=2

Here, unlike Lemma 2(b) ill which m = 1, the right-hand sum does not appear

to telescope. This identity is easy to verify.

4 EXPLICIT CONTINUED FRACTIONS

It is remarkable that, even though a random fraction's limiting geometric mean

exists and furthermore equals the Khinchin constant with probability one, not

a single explicit continued fraction has been demonstrated to have geometric

mean K0. Likewise for any negative integer p, not a single explicit fraction has

been shown to have itolder mean equal to I(p. In any event, it is worthwhile to
mention some explicit fractions with respect to this theoretical impasse.

The continued fracti, m for e is

e= [2, 1,2, 1,1,4, 1, 1,6, 1, 1,8, ...].

The elements are eventually comprised of a meshing of two arithmetic progres-
sions, one of which has zero common difference while the other has difference

two and diverges, q'hus the meshing has diverging geometric mean. Thus e

does not possess geometric mean K0. The harmonic mean for e does exist, but

equals 3/2 which is not K-1. It turns out that any fraction with elements lying

in a single arithmetic progression can be evaluated in t;erms of special fimctions.

Explicitly, for any positive integers a, d

[o,a+d,a +2d, a+ 3d,...]- I,_/a.-l(_-)
s<,l,+C

where I, is the modified Bessel function of order v. These arithmetic progression
fractious are certainb interesting, and not beyond deep analysis. It was known,

for example, to C. L Siegel that these fractions are transcendental [17]. But
each such fraction has diverging geometric mean and indeed diverging H61der

means. Note that the means are monotone non-decreazing in p and so a fraction
with lim inf of its elements infinite has infinite means.

Another example of interest is _r, whose continued fraction expansion is

7r = [3, 7, 15, 1,292, i, I, 1,2, 1,3,...]

The continued fraction elements do not appear to follow any pattern and are
widely suspected to be in some sense random. Based on the first 17 million
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digits, the geometric mean is 2.686393 and the harmonic mean is 1.745882 [10].
These values are reasonably close to Ko and K-l, but of course no conclusion

can be drawn beyond this.

It is a well known theorem of Lagrange that the elements of a simple continued

fraction form an eventually periodic sequence if and only if the fraction is an

irrational quadratic surd. All Khinchin means Kp for p = 0,-1,-2,... then
exist, and are completely determined by the mean of one period of elements.

Hence each Khinchin mean of a quadratic surd is an algebraic number. Clearly,
for any algebraic number c = a t/b formed from integers a, b, one can write down

a quadratic surd having geometric mean c. Along these lines, it is not hard to

show that if there exists an integer m > 2 such that

log(Ko/m)

log(2/m)

is rational, then there exists a quadratic surd with geometric mean K0. Thus
the issue of transcendence for K0 and related numbers is an interesting one,
and one we return to in the next section. It is also of interest that Liouville

transcendentals form a residual null set, and thus comprise a "numerous" set

whose members typically do not respect the [£o limit.

If one were in possession of K0 to arbitrary accuracy, one could of course con-

struct a fraction having geometric mean K0 by appending a "2" (respectively,

"3") to the element list whenever the current geometric mean were above (be-
low) K0- There seems to be no way to determine a priori the value of, say, the

n-th element. Thus such a constructed fraction is not explicit.

However, we propose here, without recourse to the value of Ko, a continued

fraction, possessed of explicitly defined elements a,,, that should have geometric

mean K0. Our construction is based on a deterministic stochastic sampling of

the Gauss-Kuz'min density, and proceeds as follows. First, for non-negative
integer n define the van der Corput discrepancy sequence associated with n to
be the base-2 number

d(n) = O.boblb_...

where the bi are the binary bits of n, with b0 being least significant. As n

runs through positive integers, the sequence of d(n)is confined to (0,1) and has

appealing pseudorandom properties. The construction of the number we shall

call Z2 then starts with a0 := 0, and loops as follows:

For n = 1 to o0, set a,, := [1/(2 _(") - 1)J

The continued fraction elements a,_ thus determined start out:

Z,_ = [0,2,5, I, |1, 1,3, 1,22, 2,4, 1,7, 1,2, 1,45,2,4, 1,8, 1,3, 1, 14, 1,3,1,6,]
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while the numerical value of Z2 is approximately

Z2 = 0.46107049595671951935414986933669968767808281325747 ....

On the basis of anticipated statistical features of our construction we are moved

to posit:

Conjecture. The geometric mean of the number Z2 is in fact the Khinchin

constant ,rio. Furth,_rmore, every p-th HSlder mean of Z2 for p = -1,-2, ... is

the respective Khinchin mean l(p.

There are some features of the Z_ construction that lend credence to our con-

jecture. On the basis of the known density properties of the discrepancy set, it

can be shown that the elements of Z2 are unbounded, and that every possible

integer element value a,_ = k > 0 is attained infinite]y often.

With regards to the above conjecture, S. Plouffe [14] has reported a computation
of the geometric and harmonic means through 5206016 continued fraction ele-

ments of Z2. His resl_lts are 2.6854823207 and 1.7454074435, respectively, which
are remarkably close to the expected theoretical values. These results raise a

deeper question: what is the rate of convergence of these empirical means to

their limiting values" The authors have also been iutormed by T. Wieting that

he has an unpublished proof of the basic conjecture, i.e. that the limiting Holder

means of Z2 exist for p = 0, -1, -2, ... and furthermore equal the corresponding
Khinchin means [20].

In the numerical evaluations reported above and in the next section, the follow-
ing definitions of empirical H61der means were used:

HO := ai

Hp :--- a_ p < O.

i=l

Here H v is the quantity that should, a.s N ---* co, converge to A"v with probability
one.

5 COMPUTATION OF I<HINCHIN MEANS

The authors have explicitly computed Ko and K-1 to more than 7350 decimal

digit accuracy. These computations were performed with the aid of the MPFUN

multiprecision software [2, 3], which was found to be significantly faster for our
purposes than other available multiprecision facilities. One utilizes this software

by writing ordinary Fortran-90 code, with multipreci,don variables declared to
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be of type mp_integer, mp_.real or mp_complex. In the computations described

below, the level of precision was sufficiently high that the "advanced" routines of

the Fortran-90 MPPUN library were employed. These routines employ special

algorithms, including fast Fourier transform (FFT) multiplication, which are

efficient for extra-high levels of precision.

I(0 was computed using the formula given above in Theorem 3, with the free

integer parameter N = 100, and with N = 120 as a check. The implementation

of this formula was straightforward except for the computation of the Riemann

zeta function. To obtain 7350 digit accuracy in the final result, 2048 terms of

the indicated series were evaluated, which requires {_(2k), 0 < k < 2048} to

be computed. One approach to compute these zeta function values is to apply

formulas due to P. Borwein [6]. These formulas are very efficient for computing

one or a few zeta function values, but when many values are required as in this

case, another approach was found to be more efficient. This method is based

on an observation that has previously been used in numerical approaches to

Fermat's "Last Theorem" [7, 8]; namely,

OD

coth(Trx) - -2 _ ((2k)(_l)t x2 k
k=O

= cosh(  )/sinh(. )
1 1 + + + +...

1 + + + +...

Let N(x) and D(x) be the numerator and denominator polynomials obtained
by truncating these two series to n terms. Then the approximate reciprocal

Q(x) of D(x) can be obtained by applying the Newton iteration

Qk+1(x) := Q_(x) + [1 - D(x)Qk(x)]Qk(x).

Once Q(x) has been computed to sufficient accuracy, the quotient polynomial is
simply the product N(x)Q(x). The required values ((21c) can then be obtained

from the coefficients of this polynomial.

Computation time for the Newton iteration procedure can be reduced by start-

ing with a modest polynomial length and precision level, iterating to con-

vergence, doubling each, etc., until the final length and precision targets are

achieved. Computation time can be further economized by performing the two
polynomial multiplications indicated in the above formula using a FFT-based

convolution scheme. In our implementation, FFTs were actually performed at

two levels of this computation: (i) to multiply pairs of polynomials, where the

data elements to be transformed are the multiprecision polynomial coefficients,

and (ii) to multiply pairs of multiprecision numbers, where the data elements
to be transformed are integers representing successive sections of the binary

representations of the two multiprecision numbers.
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h'_ 1 was computed by applying the formula in Corollary 7. Again, the challenge

here is to pre-comptlte values of the Riemann zeta l'unction for integer values.
But in this case both odd and even values are required. The odd values can be

economically computed by applying the following two formulas, the first given

by Ramanujan, but simplified slightly, the second derived by differentiating a

companion identity of Ramanujan ([4]):

k=l

2N+2

U21, B4N-F4-2k

k--0

i 3_ (2_k+ 2g)exp(2_k)- 2N
k----1

2N-b 1 Bgk B4N+2- 2k_ _(:_)4_ E (-1) k(2__ 1)!(4y + 2- 2k)!
k----1

Here B2k is as always the 2k-th Bernoulli number.

Alternatively the formulas can be written in terms of the even zetas as

((4N+3) = -2_ 1
/_4_+3(exp(2k_)- l)

k:=l

N

+1{ (4N + 7)((4 N + 4) - E 2_(4k)((4N + 4- 4k)}2
k=l

1 _ (2_k + 2N) e×p(2_k) - 2N
((4N + 1) - N _ k-_N-+_: _-

}----1

2N

+-_A_{E(-1)k2k{(2k)¢(4g + 2 - 2k) + (2N + 1)¢(4N + 2)}.
k----1

These two formulas _,re not very economical for computing a single odd value

or just a few odd val_ms of ((k) -- again, the formulas in [6] are more efficient

for such purposes. But these Ramanujan formulas are quite efficient when a
large number of odd zet_ are required. Note that the infinite series in the two

formulas can be inexpensively evaluated for many N simultaneously, since the

expensive parts of th,_se expressions do not involve N. Further, the evaluation

of the infinite series can be cut off once terms for a given N are smaller than

{.he "epsilon" of the turmeric precision level being used. Happily, convergence
here is fairly rapid fol large N.

At first glance, the lat, ter summations in these two formulas may appear quite

expensive to evaluate But note that each is merely the polynomial product of
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two vectors consisting principally of even zeta values. Thus both sets of sum-

mation results can be computed using multiprecision FFT-based convolutions.

Computation of K0 to 7350 digit precision required 2.5 hours on an IBM t'LS6000/
590 workstation, and computation of K_ 1 required some 12 hours. Excerpts of

the resulting decimal expansions for each are included in the appendix. The

complete expansions are available from the authors.

One intriguing question is whether the continued fraction expansions of the

Khinchin constants themselves satisfy the geometric and harmonic mean condi-

tions of their definitions. We found that the geometric and harmonic means for

our value of K0 were 2.663660 and 1.746398, respectively. The geometric and

harmonic means for our value of K_ 1 were 2.723115 and 1.746965, respectively.
The issue of where to terminate the list of continued fraction elements is an in-

teresting one. We employed a simple criterion: if x is known numerically, to D
decimals to the right of the decimal point, generate continued fraction elements

for x until a convergent p/q has 2q 2 > 10 D. The reason for choosing this simple

criterion is the theorem that at least one of any two successive convergents must

satisfy

1
IP xl < --
q - 2q2

and conversely, any reduced ratio p/q satisfying this inequality must be a con-

vergent of x ([11]).

To give statistical perspective to these results, we computed these same empiri-

cal means for 100 pseudorandom multiprecision numbers of the same precision.

The average and standard deviation of their geometric means were 2.683740
and 0.030124, respectively. The same statistics for their harmonic means were

1.745309 and 0.011148, respectively. Note that these two averages are in good
agreement with the theoretical values K0 and K-1. In any event, it appears

that the empirical geometric and harmonic means for K0 and K_I are within

reasonable statistical limits of the expected theoretical values.

A question implicitly asked in the previous section is whether K0 or K-1 is al-

gebraic. This question can be numerically explored by means of integer relation

algorithms. A vector of real numbers (Xl, x2, ..., z,) is said to possess an
integer relation if there exist integers ak such that aaz, + a2_2 +... + a,_x,_ = O.

It can easily be seen that a real number a. is algebraic of degree n - 1 if and

only if the vector (1, a, a2, "", a,-l) possesses an integer relation. Even if a

is not algebraic, integer relation algorithms produce bounds that allow one to

exclude relations within a region.

We employed the "PSLQ" algorithm developed by Ferguson and one of the

authors, a simplified version of which is given in [1]. This algorithm, when

applied to power vectors generated fi'om our computed values of K0 and K-I,
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found no relations fc_r either On the contrary, we ob_ained the following result:

neither /C0 or 14_1 s,_tisfies a polynomial of the form

0 ::: ao+a_ct+a20¢ _+a3c_ 3+...+a_)a 5°

with integer coefficients a_ of absolute value 10 T° or less.

In _ second experiment, we explored the possibility t_lat K0 or I(-1 is given by

a multiplicative formula involving powers of primes and some well-known math-

ematical constants. To that end, let pk denote the k-th prime. We established,

using PSLQ, that neither K0 or h'-i satisfies a relation of the form

15

0 = a01oga+Eaalogpa
k=l

+ale lot'; 7r + alT log ¢ + als log 3' + a19 log if(3) + a20 log log 2

with integer coefficieats a_ of absolute value 1020 or less. By exponentiating

this expression, it follows that neither K9 or K-1 satisfies a corresponding mul-
tiplicative formula with exponents of absolute value 102° or less.

Acknowledgment. Thanks are due to Robert Corless, Greg Fee, Thomas
Wieting, Simon Plouife, and Joe Buhler for many helpful discussions.
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Appendix: The Khinchin Constant Ko to 7,350Digits

2.

68545200106530644530971483548179569382038229399446

29530511523455572188595371520028011411749318476979

95153465905288090082897677716410963051792533483259

66838185231542133211949962603932852204481940961806

86641664289308477880620360737053501033672633577289

04990427070272345170262523702354581068631850103237

46558037750264425248528694682341899491573066189872

07994137235500057935736698933950879021244642075289

74145914769301844905060179349938522547040420337798

56398310i57090222339100002207725096513324604444391

36909874406573435125594396103980583983755664559601

The KhinchinHarmonicMean K-l to 7,350 Digits

1.

74540566240734686349459630968366106729493661877798

42565950137735160785752208734256520578864567832424

20977343982577985596531102601834294460206578713176

15026238960612981165718728271638949622593992929776

06160830078357479801549029312671643067241248453710

96077711207484391474195803753220015690822609477078

44894635568203493582068440202422591615018316479048

29229656977733143662210991806388842581650599997697

6i39i683577259217628635718712601565066754443340174

00283376465305136584406098398017126202832041200630

78553128249666473680304034761497467330708479436280

KhinchinMeans Kp for Various Negative p to 50Digits

v

-2 1.450340328495630406052983076680697881408299979605904...

-3 1.313507078687985766717339447072786828158129861484792...

-4 1.236961809423730052626227244453422567420241131548937...

-5 1.189003926465513154062363732771403397386092512639671...

-6 1.156552374421514423152605998743410046840213070718761...

-7 1.133323363950865794910289694908868363599098282411797...

-8 1.115964408978716690619156419345349695769491182230400...

-9 1.102543136670728013836093402522568351022221284149318...

-10 1.091877041209612678276110979477638256493272651429656...
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